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a b s t r a c t

Oscillators with a non-negative real-power restoring force are considered in this paper.

This type of restoring force is related to systems with a quasi-zero stiffness

characteristic or those in which the restoring force is purely nonlinear in nature.

Examples of these types of restoring force are grounded in real physical and engineering

way by means of the elliptic function the parameters of which are obtained from the

energy conservation law and Hamilton’s variational principle. Then, the approach is

extended to non-conservative oscillators by adjusting the elliptic Krylov–Bogoliubov

method. The methods proposed for the conservative and non-conservative systems

under consideration have wider applications than the existing one with respect to the

power of the restoring force. Several examples, the majority of which are so far

unsolved, are given to illustrate the methods proposed and to demonstrate their

generality, which permits unforeseen solutions for motion, containing higher harmonics

and assuring consistent accuracy regardless of the value of the power of the restoring

force. The results obtained are compared with numerical results and have excellent

accuracy.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper single-degree-of-freedom autonomous oscillators with a non-negative real-power restoring force are
considered

M €xþFðx, _xÞþC sgnðxÞjxja ¼ 0, (1)

where M is a mass, x is displacement, dots stand for the differentiation with respect to time t, C is the coefficient of the
restoring force and a is its power that can be any non-negative real number. The function F stands for non-conservative
forces which, in general, depend on the displacement and velocity. When F=0, the oscillators are conservative. The initial
conditions are prescribed as

xð0Þ ¼ X0, _xð0Þ ¼ 0, (2)

where X0 is a positive real constant.
The non-negative real-power restoring force given by the last term in Eq. (1) can originate from two types of systems.

The first type relates to the originally multi-term restoring force tuned to have a quasi-zero stiffness characteristic, which
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is of interest for vibration isolation [1–3]. The second type arises in systems where the restoring force is purely nonlinear in
nature. Practical examples of these systems are grounded in different fields of physics and engineering [4,5]. Some of them
are micro-electro-mechanical systems: for instance, in an electrostatically operated micro mirror, the restoring force is
proportional to the square of the deflection [6]; then, in a micro-actuator, the force–displacement relationship can have an
exponent that ranges from 2 to 7 [7]. Further, suspension of the vehicle can be modelled in this way with the power being
equal approximately to 3

2 [8,9]. Also, the interaction between the beads in the study of impulse propagation in a chain of
elastic beads is characterized by the fractional-order potential with the exponent between 2.5 and 3 [10].

The conservative oscillators modelled by Eq. (1) with F=0 have been the subject of the extensive research. Rosenberg
[11] presented their solution for motion in the form of newly created special Ateb functions. However, for the sake of
convenience, many later studies have been devoted to describing the motion by using the trigonometric functions [12–15]
or elliptic functions, which have been used for quadratic and cubic oscillators only [16–20]. The oscillators with a single-
term nonlinear restoring force are named ‘truly nonlinear oscillator’ by Mickens [21], whose work initiated series of papers
in which these oscillators have been studied by different methods, such as the harmonic balance method, parameter
expansions, iteration methods, variation methods, etc. (see, for example, [14–21] and the papers cited therein).

Among the papers concerned with the non-conservative oscillators modelled by Eq. (1), two main groups of studies can
be distinguished. The first group of papers include those concerned with the oscillators with a fractional-order restoring
force with the motion described by trigonometric functions. In [13], the van der Pol equation with a¼ 1

3 was studied by
using phase-space techniques and the Lienard–Levinson–Smith theorem. Waluya and van Horssen [22] used the
perturbation method based on integrating factors to derive approximate first integrals for the van der Pol oscillator in
which a¼ ð2mþ1Þ=ð2nþ1Þ, and m,n 2 N. In [23], analytical approximations to the period of a generalized van der Pol
equation were obtained by using various asymptotic methods. In [14], the Krylov–Bogoliubov method was extended to
find the first approximation of motion the frequency of which was calculated from the exact period of the corresponding
conservative oscillator. According to the author, the method gives good approximations for 1rar3. The second group of
papers comprises studies of the oscillators with a polynomial (integer-power) restoring force with the motion described by
elliptic functions. Quadratic oscillator have been investigated by applying the elliptic perturbation method [24], the elliptic
multiple scales method [25] and the elliptic Lindstedt–Poincaré method [26]. Following this work, Chen et al. [27] have
recently proposed a perturbation method for determining the homoclinic solution of non-conservative quadratic
oscillators with a generative solution that has the form of a hyperbolic function. Cubic oscillators have been studied by
using the elliptic multiple scales method [25], the elliptic harmonic balance method [28], the elliptic Krylov–Bogoliubov
method [28–30] and the elliptic Lindstedt–Poincaré method [31].

Although the elliptic functions are sometimes considered to be more difficult to work with than trigonometric
functions, this work can be considerably simplified, accelerated and made to be more efficient if computer algebra and
symbolic software are used [17,18]. Motivated by these possibilities as well with the fact that an elliptic function includes
higher harmonics in itself, which can be of paramount importance in nonlinear problems, we seek for the solution of
motion of the oscillator modelled by Eq. (1) by assuming it in the form

xðtÞ ¼ A cn½c,mðaÞ�, (3)

where A is an amplitude of motion, while c, which depends on the frequency of the Jacobi elliptic function, and the
parameter m is unknown. It is proposed here to determine them from the energy conservation law and Hamilton’s
variational principle, respectively, as the functions of the arbitrary power a. The solution given by Eq. (3) is then used as a
generative one for the extension of the Krylov–Bogoliubov method to find the motion of non-conservative oscillators. In
comparison to the existing techniques, the methods proposed in this paper for both conservative and non-conservative
cases do not have any limitations regarding the value of the power of the nonlinear restoring force, and, thus, cover wider
range of theoretical and practical problems, which are also accompanied with the excellent accuracy of the solutions
obtained regardless of the value of a.
2. Conservative oscillator: generative solution

In this section, the conservative oscillators modelled by Eq. (1) with F=0 are considered.
Introducing non-dimensional (ND) displacement x and time t

x¼
x

X0
, t¼ tffiffiffiffiffi

M

C

r
Xð1�aÞ=2

0

: (4)

Eqs. (1) and (2) become

d2x
dt2
þsgnðxÞjxja ¼ 0, xð0Þ ¼ 1,

dx
dt
ð0Þ ¼ 0: (5)
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The corresponding energy integral of this system is

1

2

dx
dt

� �2

þ
jxjaþ1

aþ1
¼

1

aþ1
, (6)

which yields the following expression for the period of oscillations [14,32]

TND
ex ¼ 4

Z 1

0

dx
dx
dt

����
����
¼ 4

ffiffiffiffiffiffiffiffiffiffiffi
aþ1

2

r Z 1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�jxjaþ1

p : (7)

The exact period can be expressed by means of the Euler Gamma function G and the power a as follows [14,32]:

TND
ex ¼ 4

ffiffiffiffiffiffiffiffiffiffiffi
aþ1

2

r ffiffiffiffi
p
p

G 1þ
1

1þa

� �

G
1

2
þ

1

1þa

� � : (8)

Going back to dimensional variables and using Eq. (4), the period–amplitude relationship for the oscillators defined by
Eq. (1) is

TexðAÞ ¼

ffiffiffiffiffi
M

C

r
TND

ex Að1�aÞ=2, (9)

where A corresponds to the initial displacement, i.e. A� X0.
A truly nonlinear character of the oscillators under consideration, i.e. the fact that the power a can take any non-

negative real value, is the motivation to assume the approximate solution for motion by using the cn Jacobi elliptic
function in place of the usual trigonometric functions

xðtÞ ¼ cn½oNDðaÞt,mðaÞ�: (10)

The frequency oND of the elliptic function and the parameter of the elliptic function m, which can take the values from the
interval �1omo1, are unknown functions of the power a and need to be specified.

Since it is known that the period of the cn Jacobi elliptic function is 4K(m), where K(m) is the complete elliptic integral
of the first kind [33], the frequency oNDðaÞ can be related to this period by

oNDðaÞ ¼ 4KðmðaÞÞ
TND

ex ðaÞ
: (11)

The parameter m can be determined by finding the extremum of Hamilton’s action integral [34]. The action integral is

I¼

Z KðmÞ=oND

0
L dt, (12)

with L being the Lagrangian, which is defined as the kinetic energy of the system minus its potential energy

L¼
1

2

dx
dt

� �2

�
jxjaþ1

aþ1
¼

1

2
ðoNDÞ

2sn2½oNDt,m�dn2
½oNDt,m��

jcn½oNDt,m�jaþ1

aþ1
: (13)

The upper boundary in Eq. (12) corresponds to one fourth of the exact period in Eq. (8). Along this interval, the solution
described by Eq. (10) is always positive and the absolute value in the integrand can be omitted.

Substituting Eq. (13) into Eq. (12) and using Eq. (11), the action integral becomes

Iða,mÞ ¼

KðmÞ½ð2m�1ÞEðmÞþKðmÞ�mKðmÞ�G
aþ3

2ðaþ1Þ

� �

3
ffiffiffiffiffiffi
2p
p

m
ffiffiffiffiffiffiffiffiffiffiffi
aþ1
p

G
aþ2

aþ1

� � �

pG aþ2

2

� �
G

aþ2

aþ1

� �
F1

2
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffi

1þa
p

KðmÞG
aþ3

2ðaþ1Þ

� �
G

aþ3

2

� � , (14)

where E(m) denotes the complete elliptic integral of the second kind [33], and

F1 ¼ 2F1
1

2
,
1

2
,
3þa

2
,m

� �
, (15)

stands for the Gauss hypergeometric function [33].
Now, in the sense of the Ritz method [34], the action integral in Eq. (14) should be stationary. Its variation is

dI¼
qIða,mÞ

qm
dm� 0, (16)
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which implies

qI

qm
� hða,mðaÞÞ ¼ 2�ð5þ9aÞ=2ð1þaÞ

a1
�4a2ð1þaÞK2ðmÞG

1

2
þ

1

1þa

� �2

�a3a4

" #
¼ 0, (17)

where

a1 ¼ 3pðm�1Þm2
ffiffiffiffiffiffiffiffiffiffiffi
1þa

p
K2ðmÞG

2

1þa

� �
, (18)

a2 ¼ ð2m�1ÞE2ðmÞ�4ðm�1ÞEðmÞKðmÞþ3ðm�1ÞK2ðmÞ, (19)

a3 ¼
3p2m

G
3þa

2

� �2�aG2 1

1þa

� �
Gð1þaÞ, (20)

a4 ¼
1

G
aþ3

2

� � ½EðmÞF1þðm�1ÞKðmÞF2�, (21)

with F2 representing the following hypergeometric function:

F2 ¼ 2F1
3

2
,
1

2
,
3þa

2
,m

� �
: (22)

It should be noted that the expression for a1 imposes the condition ma0, which corresponds to the linear restoring force. In
this case, the solution in Eq. (10) simplifies to the trigonometric Cosine function, and thus, the condition defined by Eq. (16) is
not needed. However, it can be shown that when a�!1, Eq. (17) yields m�!0. For other cases, the function hða,mðaÞÞ given
by Eq. (17) defines implicitly how the parameter m depends on the power a. This dependence is presented graphically in
Fig. 1. In the case of a pure cubic oscillator, i.e. when a¼ 3, one has m=0.5, which is the well known result [28].

The parameter m can be obtained by solving Eq. (17) numerically for a given value of the power a, and then oND can be
calculated from Eq. (11). Their values corresponding to certain values of the power a are given in Table 1.

It is seen from Fig. 1 and Table 1 that for a higher than unity (over-linear case), the parameter m is positive. When a is
less than unity (under-linear case), the parameter m is negative. As the parameter m represents the square of the modulus
k, i.e. m¼ k2 [35], it follows is that k is imaginary in the under-linear case. It should be noted that the Jacobi cn functions
with an imaginary modulus can be converted into the one with the modulus whose value is in the range (0, 1) by using [36]

cn kuu,
ik

ku

� �
¼

cn½u,k�

dn½u,k�
, (23)

where ku¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�k2
p

. This transformation is important for the reader who would use symbolic software without inbuilt Jacobi
functions with the imaginary modulus. However, contemporary computer algebra software recognizes Jacobi functions
with the imaginary modulus and automatically performs this conversion.
Fig. 1. Parameter m defined by Eq. (17) versus the power a and a circle indicates that m=0 when a¼ 1 and a dashed line that m¼ 1
2 when a¼ 3.



Table 1

Values of the parameter m, frequency oND and correction factor d for some values of the power a.

a m Eq. (17) oND Eq. (11) d Eq. (43)

0 �0.878083 0.942948 0.756691

1/10 �0.737477 0.952046 0.717454

1/3 �0.47129 0.969686 0.6415

1/2 �0.321203 0.979709 0.597547

1.1 0.0478074 1.00263 0.484987

3/2 0.202556 1.00947 0.435285

2 0.337834 1.01129 0.390168

5/2 0.432067 1.00761 0.357573

3 0.5 1 1/3

7/2 0.550448 0.989667 0.314851

4 0.588907 0.97752 0.300438

9/2 0.618919 0.964235 0.28897

5 0.642829 0.950301 0.279679

6 0.678236 0.921786 0.265637

Fig. 2. Comparisons of the approximate solution given by (10), (11) and (17) (circles) with the numerical solution of the equation of motion (5) (solid

line) and the first approximation from [14] (dotted line) for different values of the power a: (a) a¼ 0; (b) a¼ 1
3; (c) a¼ 1:1; (d) a¼ 3:5; (e) a¼ 4:5; and (f)

a¼ 6.
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In order to check the accuracy of the solutions obtained, the approximate solution defined by Eq. (10) is plotted in Fig. 2
for several values of the power a and it is depicted by circles. In addition, in Figs. 2a–f numerical solutions obtained by
direct integration of Eq. (5) are also shown as solid lines, as well as the approximate solution that uses the Cosine function
with the exact period [14], which is plotted as a dotted line. These comparisons illustrate excellent accuracy of the solution
obtained, even for very small values of the power a or very high ones. However, this is when the first approximation in the
form of the Cosine solution [14] fails to predict the response satisfactory, since the higher harmonics are not included into
time histories, while the elliptic solution captures them well. It should also be emphasized that the solution obtained for
the case a¼ 0 (Fig. 2a), which corresponds to the so-called antisymmetric oscillator, is in excellent agreement with the
numerical one. Unlike its exact solution expressed in the form of a non-periodic square polynomial [21], the solution found
herein has the form of a periodic function, which is thus valid for an arbitrary time interval. In order to present the match
and the difference between the results clearly, only the solutions corresponding to one fourth of the period are shown, with
the exception of the case a¼ 1:1 (Fig. 2c), when even a smaller time interval is plotted for clarity.

The approximate solution constructed for the conservative case can be used now as a generating solution for
non-conservative oscillators.
3. Non-conservative oscillator: Krylov–Bogoliubov method

By introducing the non-dimensional variables given in Eqs. (4), (1) and (2) can be written down as

d2x
dt2
þef x,

dx
dt

� �
þsgnðxÞjxja ¼ 0, xð0Þ � A ¼ 1,

dx
dt
ð0Þ ¼ 0, (24)

where ef ðx,dx=dtÞ is the non-dimensional form of the force Fðx, _xÞ. It is assumed here that e51, i.e. that the term
ef ðx,dx=dtÞ represents a small perturbation of the conservative oscillator governed by Eq. (5).

In order to find the approximate solution of the non-conservative oscillators modelled by Eq. (24), the so-called
generative solution is assumed in the form defined by Eq. (10), i.e. as x¼ A cn½oNDðaÞt,mðaÞ�, and with the velocity given by

dx
dt
¼�oNDA sn½oNDt,m�dn½oNDt,m�, (25)

which satisfy Eq. (24) exactly to zero order (e¼ 0), i.e.

�ðoNDÞ
2A cn½oNDt,m�dn2

½oNDt,m�þðoNDÞ
2Am sn2½oNDt,m�cn½oNDt,m�

þA
a
sgnðcn½oNDt,m�Þjcn½oNDt,m�ja ¼ 0: (26)

It is assumed now that the non-dimensional amplitude (equal to unity for the conservative case) and phase (equal to
zero for the conservative case) are not constant anymore, but change very slowly with time, so that the trial solution has
the form

xðtÞ ¼ aðtÞ cn½cðtÞ,m�, (27)

with the unknown complete phase cðtÞ being defined by

cðtÞ ¼
Z

oðaÞdsþjðtÞ, (28)

where the phase jðtÞ also needs to be determined.
Further, the frequency-amplitude relationship oðaÞ can be found from the analogy with this relationship corresponding

to the conservative case, which is the idea proposed by Cveticanin [14]. Eq. (9) implies that the period of conservative
oscillators is proportional to Að1�aÞ=2, where A is the initial amplitude. Thus, the frequency is proportional to Aða�1Þ=2.
Bearing in mind that the non-conservative oscillators under consideration can be treated as small perturbation of the
conservative ones, one can assume that their frequency changes with the amplitude in the same way

oðaÞ ¼oNDaða�1Þ=2, (29)

but the amplitude a slowly varies with time.
The next assumption of the Krylov–Bogoliubov method is that the time derivative of the solution from Eq. (27) has the

same form as the velocity given by Eq. (25), i.e.

dx
dt ¼�oa sn dn, (30)

as a result of which the following constraint is derived

da

dt cn�a
dj
dt sn dn¼ 0, (31)
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where

sn� sn½cðtÞ,m�, cn� cn½cðtÞ,m�, dn� dn½cðtÞ,m�: (32)

In addition, the trial solution should satisfy the same condition as the generating one given by Eq. (26)

�o2a cn dn2
þo2am sn2cnþaasgnðcnÞjcnja ¼ 0: (33)

Then, differentiating Eq. (30) once and substituting it into the equation of motion written in Eq. (24), gives

�
da

dto sn dn�a
do
dt sn dn�aodj

dt cnð1�2m sn2Þ�o2a cn dn2

þo2am sn2cnþaasgnðcnÞjcnja ¼�ef ða cn,�ao sn dnÞ: (34)

Taking into account Eqs. (33) and (34) becomes

�
da

dto sn dn�a
do
dt sn dn�aodj

dt cnð1�2m sn2Þ ¼�ef ða cn,�ao sn dnÞ: (35)

Combining Eqs. (31) and (35), one obtains

da

dto½sn2 dn2
þcn2ð1�2m sn2Þ�þa

do
dt sn2 dn2

¼ ef ða cn,�ao sn dnÞ sn dn, (36)

dj
dt ao½sn2dn2

þcn2ð1�2m sn2Þ�þa
do
dt sn cn dn¼ ef ða cn,�ao sn dnÞ cn: (37)

The time derivative do=dt is obtained from Eq. (29):

do
dt ¼oðaÞ

a�1

2a

da

dt : (38)

Introducing Eq. (38) into Eqs. (36) and (37), gives

da

dtoðaÞ sn2dn2 aþ1

2
þcn2ð1�2m sn2Þ

� �
¼ ef ða cn,�ao sn dnÞ sn dn, (39)

dj
dt

ao½sn2 dn2
þcn2ð1�2m sn2Þ�þoðaÞa�1

2

da

dt
sn cn dn¼ ef ða cn,�ao sn dnÞ cn: (40)

One can proceed by observing that Eqs. (39) and (40) are periodic in c with period 4K(m). Therefore, averaging over this
period, one derives

da

dt ¼
1

d

e
oðaÞ

2

aþ3

1

4KðmÞ

Z 4KðmÞ

0
f ða cn,�ao sn dnÞ sn dn dc, (41)

dj
dt ¼

1

d

e
2aoðaÞ

1

4KðmÞ

Z 4KðmÞ

0
f ða cn,�ao sn dnÞ cn dc, (42)

where d is named a ‘correction factor’ after its constant value and is given by

d¼
ð2m�1ÞEðy,mÞ�4ðm�1ÞKðmÞ

12mKðmÞ
, (43)

with Eðy,mÞ being equal to the incomplete elliptic integral of the second kind and y¼ am½4KðmÞ,m� being the elliptic
amplitude function.

By solving Eqs. (41) and (42), with the parameter m calculated from Eq. (17), the solutions for the amplitude and phase
of the oscillator in Eq. (24) can be obtained. On the basis of Eqs. (24) and (27), their initial values are

að0Þ ¼ 1, cð0Þ ¼ 0: (44)

Finally, taking into account the relationships from Eq. (4), the solution for motion of Eq. (1) can be found.
Some remarks can be made here regarding the forms of Eqs. (41) and (42) for some special values of the power a. In all

of them, the correction factor appears, which represents a constant defined by Eq. (43) for the parameter m specified by
Eq. (17). Thus, this correction factor depends on the power a, as illustrated in Fig. 3. Its values are also listed in Table 1 for
some values of the power a. When the oscillator is linear, i.e. a¼ 1, the parameter m tends to zero, the elliptic function
turns into a Cosine function and the correction factor d defined by Eq. (43) tends to 1

2. Then, the well-known equations for
the derivatives of the amplitude and phase of the classical Krylov–Bogoliubov method are derived [37]:

da

dt
¼

e
2p

Z 2p

0
f ðacosc,�aosincÞsincdc, (45)

dj
dt ¼

e
2pa

Z 2p

0
f ðacosc,�aosincÞcoscdc: (46)



Fig. 3. Correction factor d defined by Eqs. (43) and (17) versus the power a.
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In the case of pure-cubic oscillators, i.e. when a¼ 3, one calculates d¼ 1
3, which gives the following equation for the

derivatives of the amplitude and phase:

da

dt ¼
e

oðaÞ
1

4Kð1=2Þ

Z 4Kð1=2Þ

0
f ða cn,�ao sn dnÞ sn dn dc, (47)

dj
dt ¼

3

2

e
aoðaÞ

1

4Kð1=2Þ

Z 4Kð1=2Þ

0
f ða cn,�ao sn dnÞ cn dc: (48)

Eq. (47) coincides with the form derived in [29]. The expression for the phase given by Eq. (48) is slightly different from the
one derived in [29,30], which will be discussed later in Section 4.3.

The above special cases and their examination allows a fuller understanding of the generality of the derived equations
for the amplitude and phase. The next section gives several examples that illustrate their use and advantages.

4. Examples

4.1. Polynomial damping force

When the damping force in Eq. (1) has the form

Fðx, _xÞ ¼ b sgnð _xÞj _xjb, (49)

the non-dimensional coefficient e is

e¼ bCðb�2Þ=2

Mb=2
Xbð1þaÞ=2�a

0 : (50)

Three cases will be considered here b¼ 1,2 and 0, which correspond to linear viscous damping, quadratic damping and dry
friction, respectively. They all belong to the so-called positive damping [38], as they cause the amplitude of the unforced
motion to decrease. Of interest here is to obtain approximations for damped transient solutions of the oscillators with a
non-negative real-power restoring force. It will be shown how the method proposed above helps in their physical
understanding, which includes the change of their amplitudes and phases.

4.1.1. Linear damping

For the case of linear damping, one has b¼ 1, e¼
�
b=

ffiffiffiffiffiffiffiffi
CM
p 	

Xð1�aÞ=2
0 , so that Eqs. (41), (42) and (28) yield

aðtÞ ¼ exp �
2e
aþ3

t
� �

, (51)

j¼ 0, (52)

cðtÞ ¼ oNDðaþ3Þ

ða�1Þe 1�exp �
a�1

aþ3
et

� �� �
: (53)

Eq. (51) implies that the amplitude changes exponentially with time. When e is fixed, the higher the values of the power a,
the higher the relative maxima of the amplitude.
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If the equation of motion and the initial conditions are

€xþ _xþp sgnðxÞjxj3:5 ¼ 0, xð0Þ ¼ 5, _xð0Þ ¼ 0, (54)

the approximation for motion is

xðtÞ ¼ 5expð�0:307692tÞ cn½34:0996ð1�ðexpð�0:307692tÞÞ1:25
Þ,0:550448�: (55)

This approximate solution is plotted in Fig. 4 in circles together with the numerical solution, which is shown as a solid
line. Despite the fact that the decay of the oscillation is very rapid and that the nonlinearity in Eq. (54) is strong, there is very
good agreement between the solutions. In order to quantify the difference between the analytical and numerical solutions,
the percentage error is calculated between the relative extremum calculated numerically and the analytical result for the
displacement corresponding to the time when this relative extremum is achieved. This error is then averaged for all the
relative extrema shown in the figure where the solutions are plotted (this averaged percentage error will subsequently be
referred to as ~D). Thus, the averaged percentage error calculated for 9 extrema shown in Fig. 4 is ~D ¼ 0:023%.

The approximate solution for the velocity v(t), found by differentiating Eq. (55) is determined and plotted in circles in
Fig. 5 together with the numerical solution (solid line). The agreement between the solutions is very good.

4.1.2. Quadratic damping

When b¼ 2, the parameter e is e¼ ðb=MÞX0. By using Eq. (41), the solution for the amplitude is derived

aðtÞ ¼ ð1þedtÞ�2=ðaþ1Þ, (56)

where

d¼
2oNDð5�4mÞðaþ1Þ

15dðaþ3ÞKðmÞ
: (57)

According to Eq. (56), the amplitude changes algebraically with time. If e is fixed, the higher the values of the power a, the
higher relative maxima of the amplitude.

The complete phase is obtained from Eqs. (42) and (28)

cðtÞ ¼ oNDðaþ1Þ

2ed ð1�ð1þedtÞ2=ðaþ1Þ
Þ:

The solution for motion of the oscillator

2x
��
þsgnðx

�
Þðx
�
Þ
2
þsgnðxÞjxj2p ¼ 0, xð0Þ ¼ 1, _xð0Þ ¼ 0: (58)

is

xðtÞ ¼ ð1þ0:141298tÞ�2=ð1þ2pÞcn½16:651879ð1�ð1þ0:141298tÞ�2=ð1þ2pÞ
Þ,0:686102�: (59)

In Fig. 6 this approximate analytical and the numerical solution are plotted in circles and as a solid line, respectively. The
amplitude curve defined by Eq. (56) is also presented. A very good match between the solutions is evident. The averaged
percentage error calculated for 4 extrema shown in Fig. 6 is ~D ¼ 0:68%.

In order to demonstrate that the procedure is also convenient and reliable for small values of a, the following oscillator
is considered:

4 €xþ0:5 sgnð _xÞ _x2
þsgnðxÞjxj1=3 ¼ 0, xð0Þ ¼ 1, _xð0Þ ¼ 0, (60)
Fig. 4. Approximate solution for motion Eq. (55) (circles) and the numerical solution (solid line) of the oscillator modelled by Eq. (54) and dotted lines

depicts the approximate solution for the amplitude (51).



Fig. 5. Approximate solution for velocity (circles) and the numerical solution (solid line) of the oscillator modelled by Eq. (54).

Fig. 6. Approximate solution for motion Eq. (59) (circles) and the numerical solution (solid line) of the oscillator modelled by Eq. (58) and dotted lines

depicts the approximate solution for the amplitude Eq. (56).
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the solution of which is

xðtÞ ¼
cn½13:2577�0:0668855

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ0:0243805t
p

ð198:214þ4:83257tÞ,�0:47129�

ð1þ0:0243805tÞ3=2
: (61)

This solution is shown in Fig. 7 and a good match with the numerical solution is evident. For the extrema shown in this
figure, the average percentage error is ~D ¼ 0:25%.

4.1.3. Dry friction

For the case of dry friction, the force F in Eq. (1) is given by F ¼ b sgnð _xÞ, where the coefficient b is proportional to the
normal force. The dead zone is

�xdoxoxd, xd ¼
b

C

� �1=a
: (62)

For this system, the parameter b¼ 0 and hence, e¼ b=ðCXa
0Þ, which yields

�e1=aoxoe1=a: (63)

By using Eq. (41), the solution for the amplitude is obtained

aðtÞ ¼ ð1�eqtÞ2=ðaþ1Þ, (64)

where

q¼
ðaþ1Þ

oNDdðaþ3ÞKðmÞ
: (65)

Comparing the amplitude law for the case of dry friction Eq. (64) with the one for quadratic damping Eq. (56), one can see
that their exponents are, respectively, 2=ð1þaÞ and �2=ð1þaÞ, i.e. they are of the opposite sign. A base in these amplitude
laws is a linear function of time, which in the case of dry friction has a negative slope, and in the case of quadratic damping
the positive one.



Fig. 8. Approximate solution for motion Eq. (70) (circles) and the numerical solution (solid line) of the oscillator modelled by Eq. (69); dotted lines

depicts the approximate solution for the amplitude in Eq. (70) and gray dashed lines depict the dead zone defined by Eq. (62).

Fig. 7. Approximate solution for motion Eq. (61) (circles) and the numerical solution (solid line) of the oscillator modelled by Eq. (60) and dotted lines

depicts the approximate solution for the amplitude.
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The complete phase derived from Eqs. (42) and (28) is

cðtÞ ¼ oNDðaþ1Þ

2aeq
ð1�ð1�eptÞ2a=ð1þaÞÞ: (66)

It should be noted that Eq. (64) implies that there is the moment of time t* for which a ðt�Þ ¼ 0. It is defined by

t� ¼ 1

eq , (67)

which is when the oscillations cease. As the power a increases, the value of q defined by Eq. (65) increases, too, so that t*
decreases.

In the special case when a¼ 3, one obtains the dimensional time

T�a ¼ 3 ¼
X2

0

ffiffiffiffiffiffiffiffi
MC
p

K 1
2

� 	2G 3
4

� 	
2
ffiffiffiffiffiffi
2p
p

bG 5
4

� 	 , (68)

which coincides with the result given in [30] (p. 273, Table 1).
For the oscillator

x
��
þ0:2 sgnð _xÞþsgnðxÞx2:5 ¼ 0, xð0Þ ¼ 2, _xð0Þ ¼ 0, (69)

the approximate solution for motion is

xðtÞ ¼ 2ð1�0:0583tÞ0:571429cn½20:3359ð1�ð1�0:0583tÞ1:42857
Þ,0:432066�: (70)

This solution is presented in Fig. 8 together with the numerical solution (solid line). The match between them is good.
For the extrema shown in this Fig. 8, the average percentage error is ~D ¼ 0:05%.
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4.2. Van der Pol damping

Here, the case of damping related to the van der Pol oscillator is considered. This nonlinear damping mechanism
dissipates energy for large displacements and feeds energy for small displacements, as a results of which the system
reaches a limit cycle. Of interest here is to obtain analytically the solution for transient motion as well as the amplitude of
the limit cycle of the systems with a fractional-order restoring force.

The damping function in Eq. (1) is assumed as Fðx, _xÞ ¼ gðr2x2�p2Þ _x. In this case, it is convenient to introduce the non-
dimensional displacement as x¼ rx=p and the non-dimensionless time as t¼ t=ð

ffiffiffiffiffiffiffiffiffiffi
M=C

p
ðp=rÞð1�aÞ=2

Þ, so that the equation of
motion and the initial conditions get the form

d2x
dt2
þeðx2

�1Þ
dx
dt
þsgnðxÞjxja ¼ 0, xð0Þ ¼

r

p
X0,

dx
dt
ð0Þ ¼ 0, (71)

where the well-known form of the van der Pol damping term can be recognized [38], and where

e¼ 1ffiffiffiffiffiffiffiffi
MC
p gp2 p

r


 �ð1�aÞ=2

: (72)

Using Eq. (41) gives

da

dt
¼

2e
ðaþ3Þ

að1�Ba2
Þ, (73)

where

B¼
2½1þmðm�1Þ�Eðy,mÞ�4½2þmðm�3Þ�KðmÞ

5m½ð2m�1ÞEðy,mÞ�4ðm�1ÞKðmÞ�
: (74)

It is interesting to note that when a�!1, one has m�!0 and B- 1
4. In this way, the well-known expression for the

amplitude equation on the classical van der Pol oscillator with a linear restoring force is obtained [39,40]

da

dt
¼

e
2

a 1�
1

4
a2

� �
: (75)

After integrating Eq. (73), one finds

aðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð�DtÞ 1

a2
0

�B

 !
þB

vuut
, (76)

where

D¼
4e
aþ3

: (77)

The steady-state amplitude a�, i.e. the amplitude of the limit cycle follows from Eq. (76) for t�!1:

a� ¼ B�1=2: (78)

The change of this amplitude with the parameter a is plotted in Fig. 9 in circles. This solution is in excellent agreement with
the numerical solution presented as a solid line. As a increases, the amplitude of the limit cycle slowly decreases. For ao1,
Fig. 9. Steady-state amplitude of the oscillator with van der Pol damping obtained approximately Eqs. (74) and (78) (circles) and the numerical solution

(solid line).
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one has a�42, and for a41, it is a�o2. It should be noted that this dependence is obtained in the first approximation.
However, when one wants to determine it by using trigonometric functions, the second approximation is needed. This is
because the first approximation of the solution in trigonometric functions does not show the influence of the power of the
restoring force on the amplitude of the limit cycle [21], while the approximation obtained here does.

By using Eqs. (42) and (28), the complete phase is obtained

cðtÞ ¼ 4oND

Dða�1Þ
� ~B
ð1�aÞ=4

F3þ
Bþ ~Bexpð�DtÞ

1þ
B
~B
expðDtÞ

0
BB@

1
CCA
ð1�aÞ=4

F4

2
664

3
775, (79)

where

~B ¼
1

a2
0

�B, (80)

with a0 ¼ rX0=p; F3 and F4 are the following hypergeometric functions

F3 ¼ 2F1

a�1

4
,
a�1

4
,
aþ3

4
,�

B
~B

� �
, (81)

F4 ¼ 2F1

a�1

4
,
a�1

4
,
aþ3

4
,�

B
~B

expðDtÞ
� �

: (82)

Next, the following oscillator is considered:

€x�2ð0:16�0:04x2Þ _xþ3 sgnðxÞjxj5=2 ¼ 0, xð0Þ ¼ 0:5, _xð0Þ ¼ 0 (83)

and its numerically obtained motion is plotted in Fig. 10 together with the approximate solution defined by Eqs. (76) and
(79). Figs. 10a shows the initial transient motion reaching the steady-state amplitude and the analytically obtained
amplitude given by Eq. (76) being its envelope. In Fig. 10b both numerical and analytical time histories are shown in the
steady state, confirming excellent agreement between the solutions. The amplitude of the steady-state solution calculated
from Eq. (78) is a�apr ¼ 3:85331, while the value found by integrating the equation of motion numerically is a�num ¼ 3:85233.
Fig. 10. Approximate solution for motion (circles) and the numerical solution (solid line) of the oscillator modelled by Eq. (83) and dotted lines depicts

the approximate solution for the amplitude Eqs. (76) and (78): (a) transient solution and (b) steady-state solution.
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The percentage error D is

D¼
a�apr�a�num

a�num

����
����� 100� 0:025%, (84)

which can be considered as negligible.

4.3. Perturbative term is a linear function of the displacement

In this section, the force F in Eq. (1) is assumed in the form

F ¼ cx, (85)

where c is a constant that need not be small. After introducing the non-dimensional variables from Eq. (4), the parameter in
front of the linear term is

e¼ c

C
X1�a

0 : (86)

Using Eqs. (41) and (42), leads to

a¼ 1, (87)

jðtÞ ¼ e½Eðy,mÞþ4ðm�1ÞKðmÞ��

8mdoNDKðmÞ
t, (88)

where the fact that jð0Þ ¼ 0 has been used.
The following oscillator is considered:

x
��
þx3þ0:1x¼ 0, xð0Þ ¼ 1, _xð0Þ ¼ 0: (89)

Its solution obtained by employing Eqs. (87), (88) and (4) is

xðtÞ ¼ cn½1:0685419t,12�: (90)

In [30], the authors examined the same equation on the basis of the first-order differential equation for the amplitude
which corresponds to Eq. (47), and the equation for the phase

djYB

dt ¼
e

ao
1

4Kð1=2Þ

Z 4Kð1=2Þ

0
f ða cn,�ao sn dnÞ cn dc: (91)

Their solution for motion is

xYBðtÞ ¼ cn½1:0456946t,1
2�, (92)

which is shown in Fig. 11 as a dashed line. The exact numerical solution is present also in this figure by solid lines, while
the solution defined by Eq. (90), obtained by the method proposed in this paper, is plotted in circles. The difference
between the approximate solutions given by Eqs. (90) and (92) stems from value of the correction factor d, which appears
in the expression for the phase found herein defined by Eq. (48). By comparing the equations for the phase, one can notice
that the factor 3

2 occurs in Eq. (48), while in Eq. (91) it does not. This correction factor plays an important role in obtaining
the accurate solution as illustrated in Fig. 11a, and, particularly, in Fig. 11b. Fig. 11b shows all these solutions for a longer
period of time. The significant difference between the solution xYB(t) and the exact one is seen, while the solution obtained
herein x(t) defined by Eq. (90) agrees well with the numerical solution. Consequently, it is suggested that the phase of a
pure-cubic oscillator should be calculated from Eq. (48) derived herein, instead of the expression given in [29,30].

5. Conclusions

In this paper, the oscillators with a non-negative real-power restoring force have been considered. The approximate
solution for the motion of conservative oscillators has been expressed in the form of the Jacobi elliptic function. Its
frequency has been obtained from the energy conservation law. The parameter of the elliptic function has been calculated
by using Hamilton’s variation principle and the stationary condition of the action integral. It has been shown that it has
negative values when the power of the restoring force is less than unity and positive values when it is higher than unity.
This solution has been used as a generating one for finding the motion of non-conservative oscillators. The equations for
the amplitude and phase have been obtained by adjusting the Krylov–Bogoliubov method.

Unlike the existing techniques, the methods developed in this paper for conservative and non-conservative oscillators
do not have any limitations regarding the value of the power of the nonlinear restoring force, which can have any non-
negative real value. Their application is, thus, wider, and includes not only some generic nonlinear oscillators, such as the
antisymmetric, pure quadratic or pure cubic oscillators, but also those with a non-integer-power restoring force. As
expressed in the form of the Jacobi cn elliptic function, the solution for motion includes higher harmonics and has excellent
accuracy with respect to the exact numerical solution.



Fig. 11. Plots of the approximation given by Eq. (92) from [30] (dashed line) and the approximation given by Eq. (90) (circles) and the numerical solution

of Eq. (89) (solid line) versus t: (a) at the beginning of motion and (b) after some longer period of time.
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Several examples have demonstrated the applicability of the methods proposed to a wide range of oscillators with
different powers of the restoring force and different forms of non-conservative forces. The amplitude and phase of the
arbitrary-power oscillators with linear and viscous damping as well as with dry friction have been derived, which
represent new results with research and reference values. The steady-state amplitude of the arbitrary-power oscillator
with van der Pol damping is a new result, too. This amplitude has been calculated as the function of the power of the
restoring force and has excellent accuracy. It has also been demonstrated that in comparison to the existing result for the
first-order differential equation for the phase of non-conservative pure cubic oscillators, the equation proposed here yields
better results which are valid for longer time intervals. Hence, the improved version of this equation has been suggested.
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